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PREFACE 

Various NASA groups and contractors a r e  faced with the  problem 

of adopting values f o r  such so lar  system constants a s  the  

astronomical u n i t  ( i n  e f f e c t ,  the mean earth-sun distance i n  

kilometers). 

This quantity,  together w i t h  o the r  r e l a t e d  constants such a s  

planetary masses, i s  needed f o r  accurate and e f f i c i e n t  guidance 

of space c r a f t .  The need therefore exists f o r  a systematic method 

of standardization f o r  choosing values f o r  such constants and for 

improving estimates of them as  new data become ava i lab le .  

Memorandum i s  i n  essence an  exposit ion of the  app l i ca t ion  of the  

theory of measurement e r r o r s  and s t a t i s t i c a l  estimation precedures 

t o  such problems. It dea ls  s p e c i f i c a l l y  with the  general  l e a s t  

squares estimation method and i l l u s t r a t e s  how t h i s  method can be 

e f f e c t i v e l y  applied t o  determine the  "best values" f o r  s o l a r  system 

constants,  t o  estimate t h e i r  variance, and combine new measurements 

with what i s  already known. 

This 

The Memorandum should be of value t o  s c i e n t i s t s  working i n  t h e  

f i e l d  of guidance and navigation of space vehic les ,  a s  w e l l  a s  those 

i n t e r e s t e d  i n  c e l e s t i a l  mechanics. Since the  methods out l ined  a r e  

qu i t e  general ,  and not  l imited t o  t he  s p e c i f i c  f i e l d  of astrodynamics, 

t he  paper w i l l  a l s o  be of i n t e r e s t  t o  s c i e n t i s t s  concerned with 

determining physical constants from t h e o r e t i c a l l y  r e l a t e d  experiments. 
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SUMMARY ,J4 1 -: 
/ 7 P = f j  a, 

This Memorandum reviews the statistical theory of parameter and 

variance estimation and its application to the problem of estimating 

solar system constants. The usual statistical methods for treating 

experimental data are discussed, with particular attention to the 

concepts of random error and systematic error. The maximum likelihood 

method for parameter estimation, which is a preferred statistical 

estimation method, is shown to coincide with the general least squares 

method when errors are distributed as the multivariate normal 

distribution, which is usually true to a satisfactory degree of 

approximation. The general least squares method is therefore of 

great potential utility and it is discussed in detail, especially 

with regard to methods for combining results from several related 

experiments. In appendices the theory is applied to several 

illustrative examples and to a specific experiment that has been 

suggested for determining the astronomical unit. 
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I. INTRODUCTION 

I n  the analyses,  design, and implementation of space experiments 

var ious groups a r e  faced with the problem of obtaining o r  es tab l i sh ing  

values  f o r  repeatedly used constants and parameters. There i s  need 

not only f o r  precise  numerical values, but a l so  a need f o r  a measure 

of probable accuracies f o r  these values. 

Through observations Over centur ies ,  astronomers have es tab l i shed  

a mathematical model i n  which most of the so l a r  system dynamical 

constants  and parameters a re  re la ted.  They have adopted preferred 

---l_-^- -I-- - _ ^ ^ _ ^  _1 _ _ _ _ ^ _ _  9 - c . .  (1-5) VL- A115 ---..A- p A 5 J C U L  t 
V ~ L U ~ B  WIICLI it B C ~ U C U  apprupriaLs  ~ i i d  desirable.  

capab i l i t y  of sending vehicles  into space increases both the 

opportunity f o r  more observations and more types of observation and 

a l s o  the need f o r  b e t t e r  estimates of parameters. 

observations a re  made, it i s  possible i n  pr inc ip le  t o  make new and 

more accurate estimates f o r  these s o l a r  system constants.  Occasionally 

one may need t o  rev ise  a mathematical model and introduce and estimate 

new parameters. 

As more and b e t t e r  

Often d e t a i l s  of the methods by which new values f o r  constants 

a r e  estimated a r e  not f u l l y  disclosed by researchers.  

d i f f i c u l t  t o  assess  the v a l i d i t y  of the estimated value of the constant ,  

and makes i t  impossible t o  combine new data  with t h i s  estimate i n  a 

systematic way t o  a r r i v e  a t  a be t t e r  estimate of the constant.  

I n  many cases ,  even when a well-known and precisely defined 

This makes it 
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estimation method 

error or standard 

is used, the method for determining the probable 

deviation of the estimate is obscure, and statements 

about its accuracy may be ambiguous. 

is to describe the general least squares estimation method, in the 

hope of promoting standardization in the method of solar system 

constant estimation, and uniformity in the statement of results of 

the estimation. By this method, as new data are obtained, estimates 

of constants may be updated in a systematic manner, and standard 

deviations of the updated estimates are obtained in the process. 

The method described here is by no means original, but some aspects 

of the method may appear novel even to least-squares practitioners. 

The purpose of this Memorandum 

The applicable statistical theory is reviewed and examples of 

the applications are worked out. No apology is made for the 

abbreviated presentation of certain ideas and methods from statistics, 

since the objective here is to focus on least squares theory rather 

than on the more general field of multivariate statistical analysis. 

A formulation of the general least squares problem using matrix 

methods is presented in Arley and Buch(6) and this has been extended 

by D . C .  Brown. (7) 

using matrices. 

least squares methods, and a pertinent example of the use of 

procedures delineated by Arley and Buch(6) and D . C .  Brown(7) is 

available in a report by W.M. Kaula and Irene Fischer,") concerned 

with the use of geodetic and astronomic measurements to obtain a 

World Geodetic System. 

In a recent book, Linnik(8) develops the method 

Geodesists have made rather extensive use of general 
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11. ERROR THEORY 

No matter how p rec i se ly  one attempts t o  measure physical 

quan t i t i e s ,  the observed measurement d i f f e r s  from the  t r u e  magnitude 

of t h e  quantity measured by what is c a l l e d  a "measurement e r r o r . "  

The c l a s s i c a l  theory of measurement e r r o r s  i s  concerned with only one 

kind, random er rors .  Two o the r  groups, sometimes labeled coarse e r r o r s  

and systematic e r r o r s ,  must be removed o r  t h e i r  e f f e c t s  must be small 

i f  a s t a t i s t i c a l  ana lys i s  of the  measurements i s  t o  y i e l d  a good 

estimate of the  quan t i t i e s  measured. 

Coarse e r r o r s  usua l ly  r e s u l t  from lack of care on the  part of 

an observer, and because they become conspicuous when data are displayed 

i n  one way o r  another they may be eliminated by discarding obviously 

erroneous observations. 

The following quotation from Arley and Buch(6) i s  an a p t  

descr ip t ion  of systematic e r ro r :  

Systematic e r r o r s  a r e  e r rors  due t o  one o r  a few d e f i n i t e  causes I t  

ac t ing  according t o  a d e f i n i t e  law and, as a r u l e ,  i n  one d e f i n i t e  

d i rec t ion .  

t he  same systematic e r r o r s  w i l l  occur. Consequently, i n  con t r a s t  t o  

the  coarse e r r o r s ,  systematic errors w i l l  no t  show up i n  any disagree- 

ment among d i f f e r e n t  r e s u l t s ,  but only d isp lace  them by a constant 

amount. However, i f  t he  laws governing systematic e r r o r s  a r e  known, 

these e r r o r s  can be ca lcu la ted  and t r e a t e d  a s  cor rec t ions  t o  the  values 

measured. 

Unfortunately, systematic e r r o r s  a re  not  a s  e a s i l y  discovered o r  

I f  a measurement i s  repeated under constant conditions,  

Most systematic e r ro r s  a r e  caused by t h e  instruments." 
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eliminated a s  a r e  coarse e r rors .  

To quote again from Ref. 6 ,  "Random e r r o r s  are a l l  the o ther  e r r o r s  

which do not  show any r e g u l a r i t i e s  o r  the  r e g u l a r i t i e s  of which we  

do no t  know. Sometimes the  word e r r o r  i s  appl ied only t o  systematic 

e r r o r s  and the word unce r t a in t i e s  t o  the  random e r ro r s .  I n  general ,  

i t  i s  a c h a r a c t e r i s t i c  f ea tu re  of random e r r o r s ,  i n  con t r a s t  t o  

systematic e r ro r s ,  t h a t  pos i t i ve  and negat ive values a r e  equal ly  

probable. However, e r r o r s  having skew d i s t r i b u t i o n s  may be found. 

These are  the  so-cal led one-sided e r ro r s .  By c lose r  inves t iga t ions ,  

one-sided e r r o r s  o f t en  turn  out  t o  be systematic e r ro r s .  As an 

example of a one-sided e r r o r ,  we may mention the  curvature  i n  the  axes 

of op t i ca l  instruments. 

"The d i s t i n c t i o n  between the various groups of e r r o r s  i s ,  however, 

no t  sharp. By c lose r  inves t iga t ion ,  some of the  random e r r o r s  may 

show regu la r i t i e s .  Thus an e r r o r  w e  have previously c l a s s i f i e d  as  

random may l a t e r  tu rn  out  t o  be systematic. Casually there  may a l s o  

appear a p a r t i c u l a r l y  l a rge  e r r o r  which may be mistaken f o r  a coarse 

e r ro r .  Thus i n  prac t ice ,  it i s  not  always easy t o  judge whether o r  

n o t  a measurement which deviates  conspicuously from the o the r  measure- 

ments should be rejected." 

I n  the theory of e r ro r s ,  the p robab i l i t y  d i s t r i b u t i o n  of the  

measurement e r r o r s  i s  near ly  always assumed t o  be the normal o r  

Gaussian d i s t r i b u t i o n  function. I f  x i s  an observation on the  

parameter p ,  then i t s  probabi l i ty  densi ty  func t ion  i s  given by the  

normal densitv funct ion 
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where r~ is the standard deviation of x. 

In experimentation one usually deals not with ju t a sin le 

observation on a single parameter, but with replicated 

observations on many parameters. To deal with this more general 

case, the probability distribution of the measurements is usually 

assumed to be the multivariate normal distribution. 

are observations on (ply ..., p ) where the p . ' s  need not be distinct, 

If (xl, ... 9 Xn) 

x = (xl, ... Y XJ 

n 1 * 
then the probability density function of the vector 

is given by 

where p = (pl, ..., pn), and the matrix A, called the covariance 

matrix of x, has as its i-th diagonal element the variance of xi 

and as (i,j)-th element, i f j, the covariance of xi and x 
j' 

Some particular special cases are worth noting explicitly. When 

, x are replicated observa- 1' * . .  n 

tions on p, though possibly with different variances and possibly 

= p, say, then x - - p1 = P2 - e * -  - Pn 

correlated. 

uncorrelated and so are independent univariate normal variables, but 

they may have different variances. When A = u I, where I is the 

are independent identity matrix and 0 is a scalar, 

When A is a diagonal matrix, then xl, ..., x are n 

2 

xl, . . . , x 
2 

n 
and identically distributed univariate normal variables. 

* 
Throughout this paper we shall write all our vectors as row 

vectors, so that the transpose (denoted by a prime) of a vector will 
be a column vector. 



6 

111. MAXIMUM LIKELIHOOD ESTIMATION 

The purpose of most scientific experiments is the estimation of 

parameters. The major role of the statistician in these experiments 

is to provide satisfactory estimation procedures. The point of view 

of the statistician, and the problems that beset him, are well stated 

in the following quotation from Cramer. (10) 

* 
"Suppose that we are given a sample from a population, the 

distribution of which has a known mathematical form, but involves a 

certain number of unknown parameters. There will then always be an 

infinite number of functions of the sample values that might be pro- 

posed as estimates of the parameters. The following question then 

arises: How should we best use the data to form estimates? This 

question immediately raises another: 

e s t ima te s? 

What do we mean by the 'best' 

"We might be tempted to answer that, evidently, the best estimate 

is the estimate falling nearest to the true value of the parameter 

to be estimated. However, it must be borne in mind that every 

estimate is a function of the sample values and is thus to be regarded 

as an observed value of a certain random variable. Consequently, we 

have no means of predicting the individual value assumed by the estimate 

in a given particular case, so that the goodness of an estimate cannot 

be judged from individual values, but only from the distribution of the 

* 
Sample is a set of observations, and population is a very large 

set which has the assumed characteristic distribution. 
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values which it will assume in the long run; i.e., from its sampling 

distribution. When the great bulk of the mass in this distribution 

is concentrated in some small neighborhood of the true value there 

is a great probability that the estimate will differ from the true 

value by a small quantity. From this point of view, an estimate will 

be 'better' in the same measure as its sampling distribution shows a 

greater concentration about the true value and the above question may 

be expressed in the following more precise form: 

our data in order to obtain estimates of maximum concentration? 

How should we use 

r u m  - - -- - 2 -- 
A l l =  L U l I L ~ l l L l d L I u I I  (Cir the C i Z Z ~ ~ C i i E i l t Z Z ~  property: the dispCrsicn) 

of a distribution may be measured in various ways, and the choice 

between various measures is to a great extent arbitrary. The same 

arbitrariness will, of course, appear in the choice between various 

estimates. Any measure of dispersion corresponds to a definition of 

the 'best' estimate, viz. the estimate that renders the dispersion as 

expressed by this particular measure as small as possible." 

Many criteria may be used in evaluating a method of estimation, 

but it is clear from the above that an important property of an 

estimator is that its sampling distribution have maximum concentration 

01: minimum variance. It can be shown that for large sample sizes 

estimators based on the method of maximum likelihood have this desired 

property. 

easy to construct, is mainly responsible for the attention and use 

which the maximum likelihood method has received. To use this 

estimation method, the probability density function of the sample 

(involving the parameters to be estimated), the likelihood function, 

must be specified. 

This property, plus the fact that these estimators are fairly 
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In the theory of errors, the general form of the likelihood 

function is specified, as indicated above, as the multivariate normal 

density function. The exact form of the multivariate normal density 

function to be used depends on particular detailed aspects of the 

experiment. We distinguish two main cases--that of direct measurement 

and that of indirect measurement on a set of m parameters to be 

estimated. 

The simplest case of direct measurement is the case where m = 1 ,  

so that we are interested in estimating a single parameter a and 

make N independent identically distributed observations x 1' , XN 
on cy. These x's differ from cy by random errors which are 

assumed to be normal random variables each with mean 0 and known 

variance, CT . Thus the x's are normal random variables, each with 

mean CY and variance u . The problem is to estimate cy, the expected 

value of the x's. 

2 

2 

More complex is the case where the x ' s  are independent but not i 

identically distributed in that their variances differ. Here x is 

a normal random variable, with mean cy and variance u , a known 
number, and again one wishes to estimate a ,  the expected value of 

the XIS. 

i 
2 
i 

that 

with 

Even more general is the case where the x ' s  are correlated, so  i 

, %) has a multivariate normal distribution the vector (x 

unknown mean vector a(1, ..., 1) and known covariance matrix. 
1' - - -  

Again only the scalar CY is to be estimated. 

Rather than detail the various degrees of generality of the 

direct measurement case for m > 1, let us state the most common 

case, that of replicated measurements. Here we observe N m-vectors 
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(Xll’ * - * ,  XlmL (X2y e - . ,  X2m)’ e . -  , ( x ~ ~ ,  ..., L), where the 

vectors are uncorrelated with each other, and where the i-th vector 

has a multivariate normal distribution with unknown mean vector 
- 

(cy1, ..., am) and known covariance matrix , i = 1, ..., N. 
i 

Even more general is the case where the N successive replicated 

observations on each of the ai’s are themselves correlated. In this 

case we form the mN-vector x = (Xll, . * * ,  XIm’ X 21; - . -  9 XZm’ - - e ,  

unknown mean vector CY = (ml, - - a ,  am, CYl’ - - . >  am, ... 9 CYl’ ..’, CYrn) 

, k) and assume that it has a normal distribution with N1’ .“ X 

and a known covariance matrix R which is not block diagonal. 

We can subsume all these cases in a very general statement of 

the estimation problem, as follows. Let x be avector of p observations, 

with multivariate normal distribution with unknown mean vector a and 

known covariance matrix 0. Our problem is to estimate the vector cy, 
* 

and the method of maximum likelihood requires that we maximize the like- 

lihood function of x, i.e., that we maximize 

with respect to cy. This reduces to the minimization with respect to 

(Y of the quadratic form 

(x-a) *-l (x-a) ‘ 

* 
In practice, Q may not be known, but only estimated, hopefully 

from data independent of x, and this estimate is used as the true value 
of n, rather than as a random variable. 
strict mathematical sense invalidates the subsequent analysis, the 
practical effect of this usage should be negligible if the estimate 
of 0 is based on a considerable amount of data on instrumental precision. 

Though such usage in the 
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Writing the general quadratic form to be minimized as 

(x-a) n-l(x-a)', without additional words of caution, is a bit mis- 

leading, as it is not clear from the quadratic form whether a p-vector 

x is composed of one observation on each of p different cy's (so that 

p = m) or N observations on each of p/N different a's (so that p = mN). 

In the latter case if we first write the vector CY as a = (a,, ..., cy ) 

we have as constraints among these a I s  that 
P 

i 

... = = c y  = c y  - - 
a1 p/N f 1 2p/N f 1 (N-1) p/N + 1 

(N-1) p/N f 2 ... = Q - - - CY = a  2 p/N + 2 - a2p/N + 2 

etc., whereas in the former case there are no constraints among the C Y ' S .  

And even when x is a vector of a single observation on each of m 

different a's, the a . I s  need not be functionally independent parameters. 

For example, we might measure with error the three sides and three angles 

of a triangle, so that m = 6 ,  yet the six parameters cy 

not functionally independent. Such functional constraints, as well 

as constraints on the CY'S of the type described above due to replica- 

tion, must be taken into account in the minimization of the quadratic 

1 

1) . . -  ' (Y6 are 

-1 form (x-(Y) n (x-a) '. 
We make the effect of redundancy among parameters and replication 

among our observations upon the minimization problem explicit by 

introducing constraint equations. 

ally independent parameters among the p parameters al, . . . )  cy 
We suppose that there are m function- 

to be 
P 
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estimated, and that the functional dependence of the remaining 

s 

... 9 9s(y .. . , up) = 0 .  

-1 ! reduces to that of minimizing (x-(Y) n (x-CY) 

to the constraints Jli(a) = 0, i = 1, ..., s. 

p - m parameters is given by functions Jr (CY 

Then the method of maximum likelihood 

. .., cy ) = 0, 
1 1, P 

with respect to CY subject 

A few examples will help illustrate the generality of this 

formulation. 

Example 1 (independent replications): Here we observe Q1, ... 9 am 

N times, so that p = mN, and x = (x,,, ... , xlm, 21, .. . , x 2m' X 

wher 

n =  

L 
l z  2 

0 

is the covariance m 
i 

trix of (xil, . . . Y Xh>' 

i-1 j,k=l 

where ojk is the (j ,k)-th element of i 
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In this example s = m(N-1), and the constraints are of the form 

= o  (N-1)mt-1 $,(CY> = cy1 - CY 

+ (cy) = cy2 - CY = o  mtl mt2 

(cy) = cy - a 
$m(N-l) m P  

= o  

Of course, one need not go through this formalism for this 

example, as the constraints can easily be substituted into the 

quadratic form, leaving us with the unconstrained minimization 

problem of minimizing 

N m 

i=l j , k = l  

7 cy,. 1’ - - -  with respect to cy 

Example 2 (unequal sample sizes): Here for simplicity we let m’= 2 

and observe one cy n, times and another cy n, times, so that 
I 

(Xll, - - * ’ Xnll’ 
+ n ) covariance 
Then s = n + n 1 2  

p = n  + n  a n d x =  

known (nl + n )x(n 
cy = (a l ,  ..., cy ). 

the form 

1 2  

2 1 2  

P 

L 

..., x ). Let R be the 
x12 , n22., 
matrix of x, and write 

- 2 and the constraints are of 
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= o  
= o  

- C Y  = o  
nl+l nl+n2 

Jrn +n -2(a) = 
1 2  

Again the constraints can be substituted directly into the quadratic 

-1 I form (x - a) n (x - a) . 
When n is block-diagonal, i.e., when the observations on one of 

the parameters are uncorrelated with those on the other, but all 

observations oq a single parameter are correlated, then 

n =F L O I  

and the quadratic form reduces to 

1 n 

j , k=l 

2 n 
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Example 3 (replication and redundancy): We will describe here a 

(11) generalization of a surveying problem taken from Deming. 

In this example we are surveying a plane triangle 

and have 4 observations on P ,  2 observations on Q and R, and one 

observation on p, q, and r. Here p = 11, and we write 

and the constraints due to replication are 

In addition, there are three constraints due to the functional 

dependence of the sides and angles of a triangle: 
sin al sin o! - 5 = o  

10 a = 
a9 

sin cy, sin CY- 
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The quadratic form Q = (x-CY) Q-'(x-cr)' is to be minimized subject to 

these constraints to obtain the maximum likelihood estimate of cy. 

The first five constraints are of simple enough form that one 

can substitute them directly into Q. When L? is block diagonal of 

the form 

n =  

7 

z, 
0 
2 

O4 2 
5 o 

-. 

2 
6 CT 

r -7  

, CY: and 2 
is a 4x4 matrix, L2 and 4 are 2x2 matrices, and a4 where 

Q are scalars, then Q breaks up into six sums: 
2 4 
6 < 

4 2 

n 

WhenLi = of I, then the i-th sum reduces further to the sum of squares 

of deviations of the x 2 from their means, divided by ai. ji 
In the case of indirect measurement, we suppose that, though the 

x's described above are direct measurements on the vector 

cy = (a1, ... Y ap' , these a's are-functions of a vector p = (ply ..., pt), 
and our problem is to estimate p. Since there are p-s functionally 
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independent C Y ' S ,  i n  order f o r  these a ' s  t o  be functions of t 

funct ional ly  independent p's  we must have t S p-s.  

the p's a re  funct ional ly  dependent and t h i s  dependence must be taken 

When t > p-s  

i n t o  account by fu r the r  cons t r a in t s  on the p ' s .  We s h a l l  not  consider 

t h i s  case, except t o  point  out t h a t  i t  can e a s i l y  be handled by extend- 
j 

ing the procedure w e  ou t l ine  to  include these cons t r a in t s .  

From our mathematical model we determine the t independent functions 

f i (u ,  p) = 0 which r e l a t e  the d i r ec t ly  observed parameters a with the 

ind i r ec t ly  observed parameters p.  Our problem i n  t h i s  case i s  t o  

minimize (x - a )  0- (x - a)' with respect  t o  CY and p subjec t  t o  the 1 

s+t cons t ra in ts  f . ( a ,  p) = 0,  i = 1, . . . ,  t ,  I!I~(CY> = 0, j = 1, ..., s .  

We s h a l l  discuss methods f o r  performing t h i s  minimization and then 

1 

obtaining the maximum l ikel ihood estimates of CY ( i n  the d i r e c t  

measurement case) o r  p ( i n  the ind i r ec t  measurement case) i n  the 

next sec t  ion. 

Example 4 ( ind i r ec t  measurement): To i l l u s t r a t e  the case of i n d i r e c t  

measurement we present a modification of Example 3. I n  t h i s  example, 

we a r e  surveying the same t r i ang le  as i n  Example 3 ,  except t h a t  we 

have only the observations on P, Q, R,  and p ,  and a r e  in t e re s t ed  in 

estimating q and r. Here p = 9 ,  s = 5, and w e  wr i t e  

$,(CY> = - a2 = 0 



17 

Our vector p is  composed of the unknowns of interest, q and r ,  

so  that t = 2.  We write p1 = q ,  p2 = r ,  and 

s in  ctl sin a5 
= o  -- f l ( C Y ,  PI = 

CY9 Pl 
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I V .  GENERAZ, LEAST SQUARES ESTIMATION 

As seen e a r l i e r ,  the most general  es t imat ion problem i s  one 

involving ind i r ec t  measurements, where x i s  a p-vector of observa- 

t ions  on CY, p i s  a t -vector  (ply 

i = 1, ..., t ,  and $.(CY) = 0, j = 1, ..., s. The problem i s  t o  

estimate CY and p subject  t o  the s + t cons t r a in t s  given above. 

p t ) ,  where fi(a, p) = 0, 

3 

The method of ordinary l e a s t  squares requires  tha t  one minimize 

the quadratic form Q = (x - CY)(X - CY)' with respect  t o  CY and p, 

subjec t  t o  the s + t cons t ra in ts  

generally,  one can assign weights ,d  t o  each of the x and requi re  

t h a t  the quadrat ic  form Q = (x - CY) D (x - CY) be minimized, where D 

Jlj(a) = 0, f i (a ,  p,) = 0. 

i i 

More 

* ' 

i s  a diagonal matrix of weights d . 
and define the general l e a s t  squares problem as one of minimizing the 

One can be s t i l l  more general  i 

quadratic f o r m  (x - CY) W (x - CY)' with respect  t o  CY and 

i s  a known synnnetric pos i t ive  d e f i n i t e  mat r ix  of weights. 

p,, where W 

A A 
Let a(W) and p(W) denote the minimizing CY and p f o r  the weight 

matrix W. It can be shown t h a t  choice of the inverse of the covariance 

matr ix  of x as the weight matrix w i l l  lead t o  es t imates  of CY and p, 

which have asymptotically smallest  variance among a l l  es t imates  of the 
A A - form CY(W), p(W). 

asymptotically smallest variance.  As pointed out e a r l i e r ,  i t  i s  the 

maximum l ikel ihood est imate  which has t h i s  more desired property.  

This i s  not  t o  say t h a t  these est imates  have 

I f  we c a l l  n the covariance matrix of x ,  then the "best" 

quadratic f o r m  to  be minimized i s  

(x - CY) d ( X  - C Y ) '  
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which is identical with the quadratic form to be minimized in maximum 

likelihood estimation for the multivariate normal distribution. Thus 

when the distribution of the measurements is multivariate normal, 
A -1 A -1 

the least squares estimates w(n ), p(0 ) have asymptotically smallest 

variance among estimates of Q and p, not merely among all estimates 

of the form cy(W),  p w ) .  
A A 

Minimization of this quadratic form subject to the constraints 

fj(Q, p) = 0 ,  $i(ct) = 0 is accomplished by the method of Lagrange 

multipliers, which requires that one find the saddlepoint of the 

j=l A=1 

where X1, ..., As and.6 
equate to zero the derivative of S with respect to both the cy and 

..., 6, are Lagrange multipliers. Here we 
1’ 

i 

the p to obtain the p + t equations 
1 

t a f p ,  P) 
= o  j = 1, . . . y  t 

p=1 c c, % 
here [(x - a) is the i-th element of the vector (x - CY) n”. 
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In general, these equations can only be solved by numerical methods. 

However, a judicious use of Newton's method can simplify matters, 

after rewriting these equations in matrix notation by introducing 

the vectors F(a,  CL) = ( fl(cyy cl), ... , ft(a, p)) , 

$(CY) = (q1(cy), ... , $,(a)) , A = (Aly - - .  , As)  and 2 = (Cly ... Y Ct)> 

the t x t matrix F (cy, p) with f CL vij 
the s x p matrix Jr with Q 

CY ai j 

matrix F (CY, P) with f ai j = [afi(Q), p)] / [aajI. 

= [afi(cy, JL)] / [apj] 

= [aQi(cy)] / [aa,], and the t x p 

ct 

Let 2 be an initial guess at the value of the minimizing CY, 

where JI , (CY' ) need not equal zero for j = 1, . . . , s ,  and let po be an 

initial guess at the value of the minimizing p.  

mate Q .(a) by 
J 

J 
Then we can approxi- 
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Equating the derivatives of S with respect to cy and p to zero, 

we obtain the matrix equations 

A s  the p ' s  are functionally independent, the t x t matrix F (a', Po) 

i s  non-singular, since it is the Jacobian of the transformation from 

the space of p ' s  to the space of f's. 

P 

Thus Z = 0 .  

To determine A we substitute the value 

cy = x - A tu($) Q 

into the linearized constraint equation for cy to obtain 

$(cyo) + (X - A Jrcy(cyo) - $1  $:(cyo) = 0 

or 

The vector p is found by solving the other constraint equation 
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These values of cy and p sa t i s fy  the approximate constraints, 

though not the exact constraints,  even if CY' and p' d i d  do so.  

However, these values of o! and p are used as CY' and p'and the procedure 

i s  i terated un t i l  i t  converges on a value CY of CY and p of p, which 

then should both sa t i s fy  the exact constraint and minimize 

A A 

(x - CY) n-l(x - a)'. 

A 
It i s  clear from the above that the f ina l  estimate CY of CY w i l l  

be of the form x A + B, where A i s  a matrix of the form 

. 
Since n is the covariance matrix of x, we see that the covariance 

ma t r ix  of 

computed quantity. 

A -1 
is A' CI A = n - CI $; (JI, CI $00 JI, Q = Q A, an easi ly  

A A 
The vector p is of the form CY C + D, as seen from the above, 

where I 

A 
so that  the covariance matrix of p i s  

C '  ~ ' n  A C  I C '  ~ A C  

A A 
The cross-covariance matrix between CY and p is given by 

A A  
A' n A C = n A C, so that  the covariance matrix of (a, p) ie 
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V. THE PROBLEM OF WEIGHTING--COMBINING RESULTS FROM 

SEVERAL EXPERIMENTS 

In least squares estimation, the covariance matrix associated 

with the observations is important in giving the proper weight to the 

different observations. It is clear from the form of the estimate of 

cy that0 need be known only up to a scale factor, so that only relative 

values of the variances and covariances are important. 

matrix of the estimate will then also be known only up to a scale 

factor. However, as we shall see, if the covariance matrix accompany- 

ing the estimates from one experiment is to provide ihe b a s i s  for  

comparing and making an overall adjustment among several experiments, 

then relative values of the variances and covariances will not 

suffice; their absolute level must also be known. 

The covariance 

Suppose we have additional observations on cy's, either as 

replications of observations one's already members of the vector 

cy = (cy,, ..., cy ) or as observations on a new a, say cyp+l, which may 

even be a function of a new p, say pt+l, with an associated constraint 

ft+l(cy, p) = 0 .  

easily be handled by enlarging the x vector, cy vector, and covariance 

matrix n appropriately. In most cases this is the only way to handle 

the problem of combining data from many experiments. 

P 

One sees from our formulation above that these can 

In the special case where the N successive experiments are 

independent and replicates of each other and the covariance matrices 

for each experiment are diagonal, however, one can easily check that 

the problem reduces to one in which one has observed a single p vector 

x = (El, ..., xp), where - 



N 
i = 1, ..., p 

j =1 

i 
j ij and 0 is the reciprocal of the variance of the j-th observation x 

i' on CY so that xi is a weighted average of the observations on cy i' 

To illustrate how to combine two independent experiments, we 

will assume that in one experiment two parameters have been estimated, 
A A  

say cy1, CY 

parameters CY 

this example, we will assume that CY and Q are estimates of the same 

with a covariance matrix C 
A A  

In another experiment, two 2 1' 

have been estimated with covariance matrix C In 3' Q4 2' 
h A 
2 3 

parameter. 
A A A A  

In this case, we take x = (~~,cy~,a~,cy~), cy = ~ ~ ~ , a ~ , c y ~ , ~ ~ ) ,  and 

S1(a) = CY2 - a3. The covariance matrix of x is 

R =  

Applying the general least squares method, we would then have 

= (0, 1, -1, 0) 
Jra 

Our estimate of Q is given by 



25 

and A is determined by solving the constraint equation $6) = 

Jr  (x - A Sa S2) 0 for the unknown A .  In this case 

A A  so that 
@2 - a3 
a 22 + 5 1  
(1) (2) h =  

h A  

is the combined least squares estimate of cy. 
N N 

It is obvious that cy = CY and fo r  consistency we also have 

new estimates for cy and cy This simple example illustrates haw 

one may use variances and covariances in weighting the results 

2 3’ 

1 4’ 

from more than one experiment to obtain new over-all estimates for  the 

separately determined quantities. 

Accompanying this new estimate will be a new covariance matrix, 

determined as follows: write in matrix form as 

0 l o  
= x A, 

0 0 
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say. Then the covariance matrix of is A' Cl A. 

The variance of CY,(= CY,) is 
H N 

(2) h 
which is smaller than either ai;) or all 
A 

respectively. The variance of G is 

the variances of Q and 2 

013 1 

N 

and the variance of Q is 4 

thus reducing the variance of the estimates of a1 and cy4 from those 

based on the single experiments. 

The same results will be achieved in this case by recognizing 

from the beginning the identity of cy2 and cy 

with the inverses of the covariance matrices C1 and C2. 

form to be minimized is 

and dealing directly 3 

The quadratic 

Q = (x - &) 0-l (x - cy*)' , 

where cy* = (alya2,a2,a4), subject to no constraints on the a's. Since 
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Q can be rewritten as follows: Define new 3 x 3 matrices 

CY = (a1, cy2, a4). Then 

Now setting the derivative of Q with respect to CY to zero gives 

us the equation 

* * 
(xl - CY) SI + (x2 - CY) s2 = 0 

or 

N * * 
CY = (xl s1 + x2 S2)(S1 + s 2 r 1  

The covariance matrix of is easily determined by first noting that 

where the vectors (a1, A A  a2, 0) and (0, A A  a3, CY,) are independent. 
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From t h i s  we see t h a t  the covariance matrix of i s  

-1 
= (S1 + S2) 

The f i n a l  r e s u l t s  obtained by t h i s  procedure w i l l  agree i n  a l l  

respects  with those obtained previously. It i s  obvious t h a t  e i t h e r  

procedure can be extended t o  cases involving any number of parameters 

i n  each experiment and many overlapping parameters. Numerical 

examples of t h i s  method of weighting the r e s u l t s  of two or  more 

experiments a r e  given i n  Appendix 11. 



the method of general least squares outlined and demonstrated in 

examples here has much to conomend its use. 

1, experience shows that the distribution of measurement errors usually 

tends to closely approximate the normal or Gaussian distribution. 

With regard to requirement 
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VI. IMPLICATIONS AND PROBLEMS 
IN APPLYING LEAST SQUARES ANAIYSIS 

When all requirements of a least squares analysis are met, an 

excellent case can be made for its use in estimating solar system 

constants. 

least squares analysis still provides a method of estimation which 

is at least more precise and reproducible than some methods which 

have been used. The method makes the estimates satisfy the theoretical 

constraint equations of the experiments. 

When the requirements are not completely fulfilled, 

1. 

2. 

3 .  

Ideally, we would like to require that: 

All observations represent a sample from a multivariate normal 

di s t ribu t ion. 

Systematic errors are small enough, or the results of least 

squares analysis are insensitive enough, that estimates are not 

appreciably affected by them. 

Parameter estimates and the covariance matrices accompanying 

estimates are the result of proper assessment of errors in the 

original observations. 

However, regardless of the distribution of measurement errors, 
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The problem of learning about and doing something about 

systematic errors is a difficult one, although not always impossible. 

Care and discretion in the handling of instrments and closer co- 

ordination and better communication between data collectors and data 

processors will often avoid introduction of certain systematic errors. 

If the presence of systematic errors in measurements is suspected from 

the beginning, and their functional relationship with other system 

parameters is known with any degree of certainty, parameters character- 

izing systematic error may be incorporated into the mathematical model 

for the system. This essentially means that there are more parameters 

to be estimated and that there are additional condition equations in 

the least squares formulation. When there are sufficient data, such 

an amplification is feasible. However, the introduction of additional 

undetermined parameters into the model is not always justified when 

these parameters are already known with a requisite degree of 

certainty. (12) 

of what t o  do about combining estimates from two (or more) experiments 

when there is an obvious incompatibility, as evidenced, say, by 

estimates for the same parameter that differ by more than two or 

three times the standard deviation as estimated from the most variable 

experiment. When this situation occurs, as it has in solar systems 

ccnstant estimation, the tendency is t o  suspect the presence of 

systematic errors, but this may not always be the reason for the 

discrepancy. It is obvious from the analysis of general least squares 

procedures that incorrect a priori assessment of even relative observation 

errors can result in incorrect estimates. Also, one may employ the 

We cannot give a definite answer to the question 
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wrong mathematical model or  derive from an adequate mathematical model 

an inadequate set of condition equations. However, it is possible to 

incorporate new parameters into a least squares estimate, thus modifying 

the model to take account of some systematic errors. As measurement 

technology in space exploration improves, it is almost certain that 

we will be obliged to modify and in general elaborate on our models 

in order to incorporate different and better and even just more 

observations. This can and should be done in a manner which does not 

require any apology for having used earlier a now discarded model that 

really served its purpose. 

Certain statistical significance tests may be used which, on a 

probability basis, can provide a means of deciding whether the results 

of a given experiment should be used in improving estimates of solar 

system constants. For example, one can use a chi-square test to 

decide whether two sets of data are from the same universe. O r  one 

can test a more specific hypothesis, that the two sets of data have 

cOmmon error variance. Unfortunately, when such a test suggests 

rejection of the data there still may be no way to pinpoint the 

difficulty, and successful employment of the test may require more 

data than exist. 

For the benefit of those concerned with improving estimates, it 

is important that the experimenter report not only the final estimated 

values for all parameters estimated, but the complete covariance matrix 

associated with the estimates. For further evaluation, there should 

be available also the list of values for all constants assumed to be known 

and the theoretical relations employed as constraints, or in other words, 

comprising the mathematical model for the experiment. 
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Whenvalues for constants are adopted for common usage by some 

11 group, having good estimates or 

measure is an important, but not the only consideration. Strict 

adherence to a theoretical relationship may be more important. To 

adopt new constants, even if better from the standpoint of statistical 

estimation, may make vast quantities of data less interpretable, and 

hence less useful. These and other reasons cause responsible national 

and international bodies to move slowly in adopting new values. We 

would expect, however, that the increasing information flow from space 

experiments would not only provide the data, but also set up the 

requirements for more frequent updating of values for constants. The 

availability of high-speed computing machinery removes, to some 

extent at least, the onus of providing new tables based upon newly 

best" estimates by some statistical 

adopted constants. 
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Appendix I 

EXAMPLES OF GENERAL LEAST SQUARES ESTIMATES 

Example l--Estimates of D i r e c t l y  Observed Parameters 

W e  w i l l  use  a surveying problem taken from Deming'") and 

descr ibed  as Example 3 of Sec t ion  I11 and apply the procedures out- 

l i n e d  in  Sec t ion  IV. 

x and x can 2 
41 I n  t h i s  example, Xi = oi I, so that x x 11' 21' 31' 4 

be rep laced  by x1 =i&xli/4, x12 and x 

x2 - (x12 2 3  

i n  t h e  quadra t i c  form t o  be minlmized. The average of the measured 

can  be rep laced  by 22 - - + ~ ~ ~ ) / 2 ,  and x13 and x can be rep laced  by G3 = (x13 + x23)/2 

v a l u e s  are: 

on P, x = 51°06!25 = -89193597 rad .  

on Q, x2 = 95O04!5 = 1.65937179 rad.  

on R, = 33'49f5 = 0.59035731 rad .  

on p,  x4 = 1723.7 f t .  

on q ,  x5  = 2205.4 f t .  

on r, x = 1232.7 f t .  

1 - 

3 

6 

The s tandard  e r r o r  f o r  measurements are 1 min. of arc. o r  

00029 rad .  f o r  angles  and 1 f t .  i n  10,000 f t .  f o r  lengths  and pro- 

p o r t i o n a l  t o  the square r o o t  of the d is tance .  Thus the  covariance 
- -  

matrix of the  v e c t o r  (Gl, x2, x3, x4, x5, x6> i s  
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2 
.00029 

4 
2 

.00029 
2 2 

.00029 
9 

0 

0 
.1724 

.2205 

- 

.1233 

We have measurements on 6 parameters and a set of 3 parameters 

are necessary to completely determine the triangle, so there are 3 

redundant parameters and 3 condition equations. Identifying CY with 

P, Q with Q, CY with R, CY with p, CY with q, ‘and CY 6 with r, unlike 

our notation of example 3 ,  Section 111, we rename the 3 condition 

2 3 4 5 

equations as 
sin CY, sin CY, 

L - = o  
5 

1 4 q C Y )  = CY CY4 
sin Q 

$,(CY) = CY 1 - 3 = 0  
sin CY 

4 CY6 

$,(CY) = CY1 + CY 2 + CY3 - Tr = 0 

Then 

$,(CY> = 

1 cos CY 

“1‘4 

cos cy1 

CY4 

1 - 

-=Os CY2 

015 

0 

1 

0 

3 -cos CY 

014 

1 

-sin cy1 
2 

CY4 

-sin a1 
2 

CY4 

0 

2 sin CY 

2 
CY5 

0 

0 

0 

sin CY 
2 

6 

0 

CY 
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0 Taking CY = x, we obtain 

.89194 

1.65932 

.5903 

1.72345 x lo3 

2.20572 x lo3 

1.23262 x lo3 

3 x l o6  - 1.7079 x 10 

These represent estimates that are best in the sense that while 

satisfying the geometrical conditions expressed by the condition 

equations, they also result in a minimization of the weighted sums of 

squares of the residuals. It should be noted that these results as 

well as those in the following examples have not been refined by 

interation. Since these estimates are functions of the observations, 

the covariance matrix of the adjusted set is obtainable in terms of 

quantities that have in general already been computed. 

The covariance matrix of al, C,,, is given by 
A 

d[ 

or 



36 

360-8 - 9.959-9 

2. 193-8 

- 3.638-' 1.418-5 - 4.102-6 - 1.008-5 

- 1.197-8 - 4.339-7 1. 286'5 - 1.243-5 

1.561-8 - 1.374-5 - 8.762-6 2.251-~ 

7. 912-2 7. 607-2 1. 720-2 

1. 021-1 4. 236-2 

(Exponents mean powers of 10.) 6. 373-2 1 
If the results of an experiment in which redundant data are 

handled by the general least squares method is presented, this co- 

variance matrix should be appended to give a useful estimate of the 

"goodness" of the estimates. It provides further a means of relative 

weighting of results from similar independent experiments or even 

different experiments when an overlapping number of quantities have 

been estimated. 

Example 2 --Estimates of Indirectly Observed Parameters 

The same surveying problem may be used in a modified form to 

illustrate a case of least squares estimation of indirectly observed 

parameters. For instance, suppose measurements are made on P, Q, R, 

and p, leaving q and r as parameters indirectly determined, as 

described in Example 4, Section 111. 

the same data as in Example 1. 

For convenience, we will use 

We will now have 0 as the 4 x 4 

diagonal matrix 
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n =  

- 
2.1025 x 0 0 0 

0 4.1050 x 0 

0 0 4.1050 x 0 

0 0 1.724 x 1O-I L o  
Identifying cy1 with P, a2 with Q ,  a with R, a4 with p,  3 

p, with q, and p with r, unlike our notation of Example 4, Section 

111, we rename the 3 condition equations as 

1 2 

sin a, sin a,, 

sin a,  sin cy, 

0 0 
Taking a = x and p, = (x5, x ) of the previous example, we 6 

obtain 

.89192 

1.65934 

.59038 

3 1.7237 x 10 

[ 2.20608 x lo:] 

1.23281 x 10 

with 
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1.6738 x - 8.3692 x 10” - 8.3692 x lo” 4.8229 x 
‘ A =  CY 1 

l3 I 2.4710 x - 1.6340 x - 3.9661 x 10- 

and 

= 
PJ 

.21893 

.21895 I 
2.4710 x - 1.7846 x I 

1.7240 x 10-1 1 
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(13) Example 3--An Estimate of Variance For A Proposed Space Experiment 

The experiment proposed originally by A. G. Wilson, and 

configured and arranged more definitively by Dean Jamison and 

George Kocher, is represented in elementary form by the diagram 

below: 

S 

An instrumented probe, P, is placed in orbit about the sun S. At 

various times observations are made on the following parameters: 

~y = the angle subtended by an earth-sun line and an earth-probe 

1 ine . 
@ = the angle subtended by the earth-sun line and a probe sun line. 

R1= the distance from earth to sun in astronomical units. 

is not directly observed from the space experiment but is available 

This 

from tables of the earth's ephemeris and a variance can be 

1' assigned to the error in 4 



r 2  = the one-way travel time for electromagnetic waves between 

the earth (E) and probe (P). The purpose of this experiment is to 

estimate the parameter A/c, the ratio of the astronomical unit of 

distance in kilometers to the velocity of light in kilometer/second. 

The parameters directly measured in this experiment are 

with one indirectly determined parameter 

p = A/c 

The observations are : 

corresponding to 

for the i-th time the set of observations are made. If the error 

i 2 2 2  , n, and variances on the x are al, , cs , d2 for all i = 1, . . . 2 3 4  

observation errors are not correlated, the covariance matrix n is 

a 4n x 4n diagonal matrix, - 

n =  

2 
1 d 

2 
=2 

2 

2 
2 U 

0 
02 
4 
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To make the example specific, we will assume n = 3. The co- 

variance matrix n will then be a 12 x 12 diagonal matrix. 

We rename our parameters, for notational convenience, as 

1 
1 'Yl = cy 

2 
cy5 = cy1 

3 
9 1  

cy = c y  

1 
3 

1 
4 

'Y3 = 

'Y4 = CY 

2 
3 
2 

@8 - 'Y4 

a7 = cy 

- 

3 

3 

9 1  = O)3 

9 2  - ''4 - 

From the geometry and physics of the problemwe determine the 

constraints Jr  and f to be 

cy4 sin(cyl + cy2) sin cy6 sin(ag + 

7 *,(a) =[ a3 sin a2 ] a8 cy 

sin(cyg + cylo) - 
1 

J1, (cy) 

The matrix JI, will have elements 
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cr4 sin(al + cy2) 

a3 a8 s in  CY 2 

cos (a 5 + CY,) 
cos CY - - - 

7 6 CY 'a16 

sin(@ + a,) 5 
2 
7 

- - 
CY 

'a1 7 

a4 sin(a 
2 

+ a ) s i n  cy6 - 1 2  - -  
2 cy8 cy3 s in  CY 

' a 1 8  

I = = o  - $CY19 - *a1,10 h , l l  ' ha1 ,12  

cr4 s in  alo cos(crl + a2)  - 
2 CY CY s i n  CY 3 12 

$CY21 - 

a4 sin(rY1 + cy2) s in  cylo - - 
2 

cyl2 cy3 s i n  a2 
s a 2 3  
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cos("g + 'yl0) 

a4 sin(crl + cr2) 

= -  
all $a2 9 

cos("g + yo) 
cos (Y - - - 

"11 10 
2 (Y CY s i n  cy tY2,lO 

3 12 

s in(ag  + ul0) - - 
f a 2  ,11 2 

CY sin(al + a ) s in  al0 4 2 = -  
2 

2 wl2 ey3 s in  QI 
Jfd ,12 

The Fa matr ix  w i l l  have t h e  elements 

cos (CY1 + CY2) 

cy3 
= cos Q - 

2 f*12 "4 

sin(orl + a2) - - 
fty13 2 

a3 

p s i n  cy2 - - -  
fcy14 2 

"4 

L O  - 
f ~ 1 5  - f a l , 1 2  

and 

f 
FL 

Using t h e  r e s u l t s  of Sect ion IV, we see t h a t  to determine t h e  

A var iance  of p w e  must compute the  matrices 
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and 

Then the 1 x 1 covariance matrix of the estimate of p is given by 

The standard deviations of the measurements are: 

1 sec. of arc in measurements of CY 

5 sec. of arc in measurements of $ 

a.u. in measurements of R 

sec. in measurements of 7 

1 

2 

Based on these assumptions and the following observations, 

CY = 6508 9 

10 

11 

CY = 3306 5 

6 

7 

4 8 

CY = 2908 

CY = 2407 
1 

2 CY = 33:3 CY = 5509 

CY = 1.0 CY = 1.0 = 1.0 CY3 
CY = 256.12531 CY 5 413.21784 cyl2 = 277.45447 

A -4 2 we find that the variance of p is .4787 x 10 sec.2/a.u. 

If we assume that c, the velocity of light, is a known constant 

c ~299792.5 km/sec., we find that the standard deviation of our 

estimate of the a.u. is 2074 km, using just the three sets of 

measurements. 
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Appendix I1 

EXAMPLE OF WEIGfFTING THE RESULTS OF TWO EXPERIMENTS 
~ ~ 

For the purpose of illustration, we will assume that the results 

of Examples 1 and 2 of Appendix I represent the analysis of two 

independent experiments. The fact that some numbers are the same 

for the two sets of measurements will not make any difference for 

this purpose. 

P,Q,R,p,q,r and their accompanying covariance matrices. 
A respectively, the vector (Y and the matrix C,,. 

the results are other estimates for P,Q,R,p, also represented by a 

vector 

corresponding covariance matrices are E,, and ZA. 

The results of the first example are the estimates of 

These are, 

In the second example, 
CY 

A A 
CY and estimates for q,r, represented by the vector p. The 

Q P 
For the purpose of using and weighting the results of both examples 

to determine a new estimate, we construct a new 12 x 12 covariance 

matrix 

c =  

0 
=A 
P 

where E:') is the 6 x 6 covariance matrix CA for Example 1, and Z,, (2 1 
a sy CY 

The zero cross- is the 4 x 4 covariance matrix E,,, from Example 2. 
h; A A covariance between CY and p of Example 2 represents a slight approximation. 

The detailed procedure from here is the same as Example 1 in Appendix 

I with the condition equations now simply 
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$,(a) = cy1 - cy 7 = 0 

. . . . . 

J I  (cy) is thus a 6 x 12 matrix whose elements are l’s, -1’s and 

Omitting the detailed intermediate results, we have for the 

cy 

zeros. 

new estimates, 

k = .89194403 1 

$3 = 1.65931298 

A = .59033445 cY3 

A 3 
cy = 1.723444 x 10 4 

3 
A = 2.205719 x 10 a5 

A 3 
Q = 1.232612 x 10 

6 

and the following covariance matrix, 
- 

6.887-’ - 5.187-’ - 1.700-’ 5.711-6 - 3.930-6 - 5.893-6 

4.392-6 - 5.465-6 -6 
1. oo9-8 - 4.906-’ - 2.235 

6.6O6-’ - 3.477-6 - 4 . 6 2 ~ - ~  1 . 1 3 6 - ~  

4.068-2 4.232-2 1.702-2 

6.025-2 3.332-2 

3.892-* - (Exponents mean powers of 10) 
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It is important to note that the diagonal terms representing 

variances in the new estimates are smaller than those for either 

Example 1 or Example 2. 
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